
Why network inference?
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Overview of the day
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• Lecture 1: Static network inference

• Practical 1: Practicing on Yogi’s gap gene data

• Lecture 2: Dynamical network inference

• Practical 2: Practicing on Yogi’s gap gene data

• Lecture 3: Stochastic network inference

————————————————————

• Mostly discussing computational methods, rather than experimental

• General principles interleaved with literature examples

• Mostly practical techniques, some abstruse theory

• There’s no substitute for your intelligence!

• Interrupt, ask questions, clarify, . . .
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Overview
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• “Correlation” networks from expression – similar genes are connected

– Correlation
– Information theory & mutual information
– Permutation testing
– Relevance Networks
– ARACNE

• Genetic interaction networks – when deleting two genes doesn’t give what
you’d expect

– Synthetic interaction lethality
– Avery & Wasserman’s qualitative framework for epistasis analysis
– A quantitative statistical model for epistasis analysis



“Correlation” networks
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Typically, we start with a data matrix measuring the expression of genes under
different conditions.
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• Main idea: Make a big graph in which
“similarly” expressed genes are connected.

• Could represent one TF regulating another,
or co-regulated genes in a complex / pathway,
or any number of other things . . . .

• The resulting graph can then be inspected /
analyzed to extract biological meaning.

• What does “similar” mean?

• When are two variables similar enough?



Pearson’s linear correlation coefficient
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Linear correlation between (x1, x2, . . . , xn) and (y1, y2, . . . , yn):

r(x, y) =
Cov(x, y)

√

Var(x)Var(y)
=

∑n
i=1

1

n
(xi − x̄)(yi − ȳ)

√

∑n
i=1

1

n
(xi − x̄)2

∑n
i=1

1

n
(yi − ȳ)2

where x̄ and ȳ are sample means.



Lit. Example: Relevance Networks (Butte et al. PNAS 2000)
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1. Remove variables with “low information content” – e.g., genes that are
always on or always off.

2. For every pair of variables (i, j) compute the Pearson’s (linear) correlation
coefficient across the conditions, rij , and then compute:

r̂2ij =
rij

|rij |
r2ij = sgn(rij)r

2

ij

3. Choose a threshold, τ , to determine statistically significant values of r̂2ij

4. Connect nodes i and j with an undirected edge, if r̂2ij > τ



How to choose τ? Permutation testing for significance
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• Suppose you’ve got paired data on two variables, x and y:
x x1 x2 x3 x4 x5 x6 x7 x8
y y1 y2 y3 y4 y5 y6 y7 y8

• Suppose you’ve got any measure of similarity ρ, which assigns a score to
such paired data, ρ(x, y).

• N times, randomly permute the y values and recompute ρ. E.g.:
x x1 x2 x3 x4 x5 x6 x7 x8
y′ y3 y7 y6 y1 y5 y4 y2 y8

• The location of the original ρ(x, y) with respect to the permuted ρ values
gives a p-value.

original

ρ(x,y)

Distribution of 

permuted ρ(x,y') 

values

similarity, ρ

• Approach is distribution and similarity-measure neutral! Still need to
choose a p-value threshold (or FDR). . .



Back to Butte et al.
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Butte et al. took 60 cancer cell lines as conditions, and used as variables
microarray expression data for 6,701 genes and susceptibility of those lines to
4,991 anti-cancer agents.

60 cancer cell lines
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• 544 genes and 93 anti-cancer agents discarded
as being low information

• 68,345,586 pairwise correlations computed
• τ = 0.8 was deemed statistically significant



Network found
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Fig. 2. Relevance networks constructed from the joined databases of baseline gene expression in 60 cancer cell lines and measures of susceptibility of the same

cell lines to anticancer agents. The pairs of features (anticancer agents in green boxes, genes in white boxes) with r̂2 at or greater than ! 0.80 were drawn with

line thickness proportional to r̂2. Features without an association at ! 0.80 were removed. Associations with negative r̂2 are in red. Seven networks are highlighted

in orange and are in Table 1. Large versions of all figures and descriptions for each accession number may be found at http:!!www.chip.org!genomics.

Found 1222 links among
834 genes and anti-cancer agents

in 202 mini-networks



Some subnetworks
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• Found many links between genes and between anti-cancer agents

• Only one gene was linked to an anti-cancer agent – possibly meaningful

• Their τ is very conservative (IMHO)

• Should they compute a different τ for each pair of variables?

⇒ Analysis of subnetworks leads to generation of hypothesis; the Relevance
Networks algorithm has been used in many subsequent studies.



Correlation is limited in the kinds of relationships it detects
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Spearman’s rank correlation not limited to linearity
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• Replace each xi by its rank in sorted-increasing order.
(E.g. 10, 3, 14, 200, 5 → 3, 1, 4, 5, 2)

• Do the same for the yi.

• Compute Pearson’s correlation on the ranks.

Captures monotone but nonlinear relationships; more robust to outliers.



Some rudiments of information theory
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• The “information” or “entropy” of a random variable ≈ how unpredictable
that variable is.

0 bits 0.8113 bits 1 bit 2.585 bits

75%

25%

• The more uniform the outcome and the larger the number of outcomes,
the greater the information.
(If “more random”=“more information” seems confusing, think in terms
of sending a message.)

• Formally, it is H(X) = −
∑

x p(x) log2 p(x) for a discrete r.v. X, or
−
∫

x
p(x) log2 p(x)dx for a continuous r.v. X.



Mutual Information
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• The “mutual information” between two variables ≈ how much better we
can predict each variable if we know the other

Choose a random square

MI(row,col) = 0 bits

col

row?

Choose a random black square

MI(row,col) = 1 bit

col

row?

MI(X,Y ) =
∑

x,y

p(x, y) log
2

p(x, y)

p(x)p(y)
or

∫

x,y

p(x, y) log
2

p(x, y)

p(x)p(y)
dxdy

= H(X)−H(X|Y ) = H(Y )−H(Y |X)

• Note that MI(X,Y ) = MI(Y,X).



Literature example: Mutual information relevance networks
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• Mutual information relevance networks (see Butte & Kohane, PSB, 2000)
is highly analogous to Relevance Networks

• Mutual information was used instead of Pearson correlation to associate
genes

• But how to compute (estimate) mutual information for gene expression
data – where we don’t know p(x, y), but only have samples?



Estimating mutual information from real-valued data
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• The simplest approach is to discretize:
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. . . and then apply the definition from the previous pages.

• How many bins? Where to draw lines? In Mutual Information Relevance
Networks, they discretized each gene’s real-valued expression range into 10
equal-sized bins – but this is not the only plausible choice!



The ARACNE algorithm (Margolin et al., BMC Bioinfo, 2006)
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Motivation: Many correlations between variables may be the result of indirect
effects

1. Estimate mutual information between all pairs of variables.
(Using a smoothing method.)

2. Link variables with mutual information ≥ τ .
(Using a permutation test to choose τ , as in Relevance Networks.)

3. Remove X ↔ Y if τ ≤ MI(X,Y ) < min(MI(X,Z),MI(Z, Y ))

The last condition is called the “Data Processing Inequality”, and it removes
the weakest link in every triplet of connected variables.

a



Estimating mutual information from real-valued data (II)
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• In ARACNE they approximate a smooth density over X-Y space using a
mixture of Gaussians.
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. . . and then apply continuous mutual information definition.

• How wide are the Gaussian? Do they have non-zero covariance? Why
Gaussian at all?



ARACNE results on simulated, random networks
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• They tested the approach on randomly generated networks (with 100
nodes, 200 links, and simulated steady state expression data):
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ARACNE
Bayesian Network
Relevance Networks

• ARACNE was more accurate than competitors at finding correct links.

– Precision = what fraction of the top K estimated links are really in the
network?

– Recall = what fraction of the true links are among the top K

estimated links?



ARACNE results on B lymphocyte data
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• Applied to expression data from B lymphocytes (≈ 340 conditions;
normal, tumor, manipulated)

• Found 29 of 56 known transcriptional targets of the proto-oncogene
c-MYC, which was a hub in the network

• Neighbors of those 29 were often highly correlated to c-MYC as well, but
had many fewer known targets

⇒ Some evidence that the algorithm can pull out real transcriptional
relationships.



“Correlation” networks summary
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• In “correlation” networks, the genes whose expression is most strongly
correlated over a set of conditions are linked

• “Correlation” can be assessed in several different ways

+ Correlation networks can be computed efficiently

+ Can find true / known relationships, as well as many new ones

+ Subnetwork inspection leads to new hypotheses

− Links are directionless, and of unclear meaning
(Though some directional proposals have been made.)

− The networks are not predictive. What would happen if gene X were
deleted?

Questions?



Overview
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• “Correlation” networks from expression – similar genes are connected

– Correlation
– Information theory & mutual information
– Permutation testing
– Relevance Networks
– ARACNE

• Genetic interaction networks – when deleting two genes doesn’t give what
you’d expect

– Synthetic interaction lethality
– Avery & Wasserman’s qualitative framework for epistasis analysis
– A quantitative statistical model for epistasis analysis



Genetic Interaction Networks
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• Biologists have long used genetic perturbations (including knock-out,
knock-down, knock-in, overexpression, ectopic expression) to test
regulatory network theories.

• When knocking out two genes, X and Y, two obvious outcomes of interest
are:

– ∆X∆Y has “stronger” effect than expected (e.g. Synthetic lethality /
sickness)

– ∆X∆Y has “weaker” effect than expected (e.g. Epistasis / Masking /
Suppression)



Literature example: Tong et al., Science, 2001
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Investigated synthetic lethality in yeast.

• Crossed a library of 4700 non-essential single-gene deletion strains with 10
“query” strains, generating 47,000 double-deletion mutants
(Robotics allowed such large numbers for the first time.)

• Assays each for liveness/growth under “standard conditions”

• Made a network by connecting genes whose pairwise deletion resulted in
dead / very sick yeast



Tong et al. results, graphically
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Tong et al. selected results
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• The recovered 8 of 11 previously-known ∆BNI1 interactors, plus 43 new
ones (all verified with low-throughput testing)

• The interactors of a gene tended to be member of a common pathway /
function. E.g. ∆BNI1 interactors:
BEM1, BEM2 BEM4 (bud emergence genes), CHS3, SKT5, CHS5, CHS7,
BNI4 (chitin sythase III activity-related), etc.

• Genes of unknown function could be assigned putative functions based on
interactions with query genes

⇒ Synthetic lethal interactions tend to reveal pathways parellel to /
dependent on query gene

• Subsequent studies have increased scale of screens, and are looking at
more quantitative/multidimensional phenotypes



Epistasis analysis of masking phenotypes
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Two examples from Avery & Wasserman (TIG, 1992):

Sex determination in C. elegans⇒ Tra-1 is epistatic to her-1       

(because Δher1Δtra1 = Δtra1)

Apoptosis in C. elegans⇒ Ced-3 is epistatic to ced-1 

(because Δced3Δced1 = Δced3)

Question: If we don’t know the pathway relationship, but only observe the
phenotype for wild-type, ∆X, ∆Y and ∆X∆Y, what can we conclude?



Avery and Wasserman’s model
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Avery & Wasserman created a simple Boolean model to formalize / explain
how to reason about epistasis.

• Consider a pathway that takes an input signal S, through an upstream
gene U, a downstream gene D, and on to the phenotypic trait T.

S U D T

• Suppose S, U and D are all Boolean (ON/OFF).

• Suppose that S either activates or represses U, and U either activates or
repressed D. (Directly or indirectly).

• Suppose all three can influence the trait T.

(Note, this is a slight re-interpretation of what they say.)



Eight possibilities structures
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For two genes X and Y, there are eight possible pathway structures, depending
on which is upstream, and whether links are activating or repressing.

S X Y

S X Y

S X Y

S X Y

S Y X

S Y X

S Y X

S Y X



Analyzing a particular pathway
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We can construct a truth table to see the behavior of any pathway, and verify
the rules. E.g., for S → X → Y :

S ∆X ∆Y X Y T Description
0 0 0 0 0 T0 signal off, wild-type
0 0 1 0 0 T0 signal off, Y deleted
0 1 0 0 0 T0 signal off, X deleted
0 1 1 0 0 T0 signal off, both deleted
1 0 0 1 1 TSXY signal on, wild-type
1 0 1 1 0 TSX signal on, Y deleted
1 1 0 0 0 TS signal on, X deleted
1 1 1 0 0 TS signal on, both deleted



Avery and Wasserman’s rules
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Going through this process for all 8 possible pathways establishes the
following rules:

1. Each single deletion only affects trait T either when signal S is ON or
when it is OFF, but not both.

2. If two single deletions affect T in opposite signal states, and one is
epistatic to the other, then the epistatic gene is downstream.

3. If two single deletions affect T in the same signal state, and one is
epistatic to the other, then the epistatic gene is upstream.

Here X epistatic to Y means that ∆X∆Y = ∆X 6= ∆Y.

• These rules give us a test for whether the model applies (rule 1)
• And allow us to make conclusions about network structure just by

observing changes in phenotype when genes are deleted (rules 2 and 3)



A statistical framework for quantitative epistasis analysis
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[Phenix et al., PLoS CB, 2011]

The Avery & Wasserman model is fundamental for qualitative reasoning
about epistasis and a key tool for reconstructing pathways. But it doesn’t
generalize well to quantitative data: How to handle noise? How to handle
off-signal effects / pathway crosstalk?

• We had single-cell growth data and
Gal10p-reporter data, under WT and all
single- and double-knockouts

• Avery & Wasserman, because its assump-
tions (and conclusions) were violated.



Single knockout data
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• Many gene knockouts affect the trait (growth or reporter expression) in
both signal states – i.e. there are signal-independent effects to deletion.

• There are some strong feedforward / off-path effects – in some cases
stronger than the on-path effects.

• Variability in data requires statistical framework for determining epistasis.



A statistical model
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• S, X, XS , Y, YS binary variables, T is the
trait

• X, Y represent whether or not genes X and
Y have been deleted

• XS , YS denote the signal/pathway-specific
effect of X and Y

• All five variables can influence the trait
through additive weights

• This allows us to separate signal-dependent influences (σS , σX , σY ) from
signal-independent influences (αX , αY ).

⇒ When the signal-dependent effect of deleting X masks the
signal-dependent effect of deleting Y –up to our ability to statistically
discriminate–then Y is downstream.



Results
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Reconstruction 

from growth rate

Reconstruction from

Gal10p-expression

• Growth rate data helped find metabolic links, some regulatory links
• Expression data helped find regulatory links
• Together, the two recreated virtually the whole network



Genetic interaction networks
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• Genetic interaction networks are built based observing a phenotype in WT,
single- and pairwise-deletion conditions.

+ Computationally easy to construct

+ May reveal pathways (e.g., synthetic lethality)

+ May be directed, and predictive (e.g. epistasis)

− They require deletion experiments!

Questions?
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