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• A “traditional” formulation of the parameter-fitting problem

– A highly nonlinear problem / analytical intractability!
– Numerical methods & examples
– Comments on noise and observability

• “Nontraditional” regression formulation of the problem

– Advantages and disadvantages
– Brief discussion of examples



A “nontraditional” formulation of the model fitting problem
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• Suppose we observed not just x(t) but also the time derivatives ẋ(t)
• Then we could ask the model to reproduce the observed time derivatives,

rather than the trajectory:

E(θ) =
1

TM

T
∑

i=1

M
∑
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(ẋj(ti)− fj(x(ti)|θ))
2

x1

x2

• Of course, we don’t usually observe the ẋ(t), but we can estimate them!



Some advantages of derivative-based error
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E(θ) =
1

TM

T
∑

i=1

M
∑

j=1

(ẋj(ti)− fj(x(ti)|θ))
2

• It is readily evaluated, without solving a differential equation.
• If f is differentiable, then we can differentiate E w.r.t. θ.
• We may even be able to minimize E analytically.



Finite difference estimates of derivatives
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Original data:
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Derivative estimates, ẋi(tj) = (xi(tj+1)− xi(tj))/(tj+1 − tj):
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Finite difference estimates of derivatives
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can be done analytically, yielding a = 0.9597 and b = −0.9581.



The error surface

6 / 15

−2
−1.5

−1
−0.5

0

0

1

2

0

0.5

1

1.5

b

a

E
(a

,b
)



Central difference estimates of derivatives
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Estimating as ẋi(tj) = (xi(tj+1)− xi(tj−1))/(tj+1 − tj−1):

0 5 10 15 20 25
−1

0

1

time

dX
/d

t

 

 
true dx

1
/dt

true dx
2
/dt

est dx
1
/dt

est dx
2
/dt

Minimizing

1

TM

T
∑

i=1

∥

∥

∥

∥

[

ˆ̇x1(ti)
ˆ̇x2(ti)

]

−

[

0 a
b 0

] [

x1(ti)
x2(ti)

]∥

∥

∥

∥

2

yields a = 0.9589 and b = −0.9589.



Fitting full interconnect matrix
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What if the data are noisy?
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Fitting a full interconnect matrix
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Yields A =

[

−0.0337 0.6994
−0.7886 0.0298

]
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A general caveat: Note that the simulated model diverges from the real
trajectory.
(This doesn’t have to do just with noise.)



Caveat: What if we only observe x1?
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• We don’t have x2 to predict ẋ1!
• We can’t estimate ẋ2 to resolve x1’s influence!



Select literature examples
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• Functional Data Analysis community in statistics (e.g., Ramsay &
Silverman, 1997)

• D’Haeseleer et al. (PSB,1999) essentially used finite differences to fit a
linear ODE model to central nervous system gene expression time series.

• Perkins et al. (PLoS Comp Bio, 2006) used a hybrid approach to fit the
gap gene data. A regression approach was used to initialize parameter
estimates; trajectory-based fitting was used to tune parameters and ensure
good fit between simulated and observed data.

• Summer & Perkins (BMC Genetics, 2010) used spatio-temporal
smoothing plus logistic regression to fit the gap gene data. Because it’s
fast, we explicitly evaluated all possible network structures.



Conclusions
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• “Traditional” trajectory-based formulation of model-fitting results in
highly nonlinear, difficult optimization problems.

• Numerical methods for fitting to trajectories are subject to local optimality
(grad. descent, Newton, fminsearch, local search) or are computationally
intensive (simulated annealing).

• However, they apply most generally, including when some model variables
are not observed and/or data are noisy.

• “Nontraditional” approaches based on derivative-fitting in a regression
framework, including functional data analysis, are computationally
efficient, and sometimes analytically solvable.

• However, they only apply (easily) when all model variables are observed.
When the model is simulated, it may not match the observed trajectory
well.



fminsearch from starting point a = 1, b = −1.5
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fminsearch from starting point a = 2, b = −0.5
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