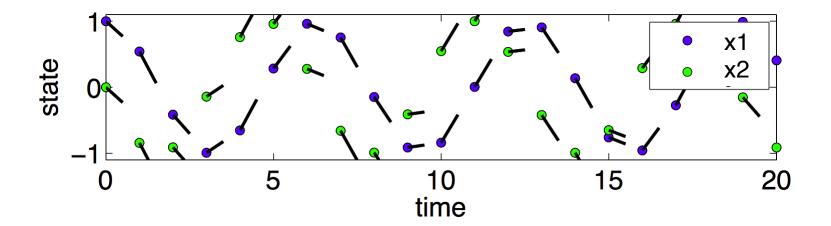
Outline

- A "traditional" formulation of the parameter-fitting problem
 - A highly nonlinear problem / analytical intractability!
 - Numerical methods & examples
 - Comments on noise and observability
- "Nontraditional" regression formulation of the problem
 - Advantages and disadvantages
 - Brief discussion of examples

A "nontraditional" formulation of the model fitting problem

- ullet Suppose we observed not just x(t) but also the time derivatives $\dot{x}(t)$
- Then we could ask the model to reproduce the observed time derivatives, rather than the trajectory:

$$E(\theta) = \frac{1}{TM} \sum_{i=1}^{T} \sum_{j=1}^{M} (\dot{x}_j(t_i) - f_j(x(t_i)|\theta))^2$$



• Of course, we don't usually observe the $\dot{x}(t)$, but we can estimate them!

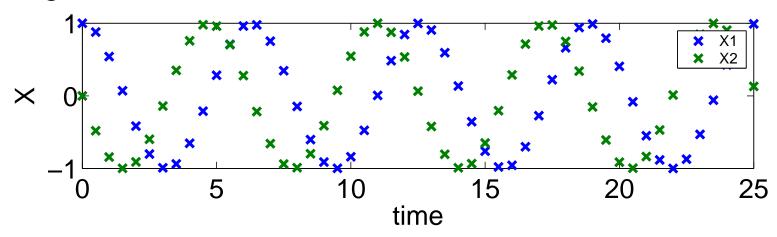
Some advantages of derivative-based error

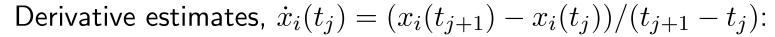
$$E(\theta) = \frac{1}{TM} \sum_{i=1}^{T} \sum_{j=1}^{M} (\dot{x}_j(t_i) - f_j(x(t_i)|\theta))^2$$

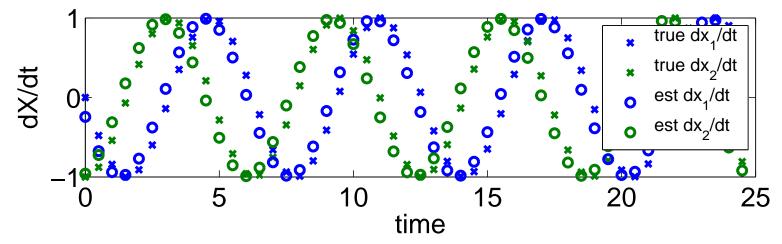
- It is readily evaluated, without solving a differential equation.
- If f is differentiable, then we can differentiate E w.r.t. θ .
- ullet We may even be able to minimize E analytically.

Finite difference estimates of derivatives

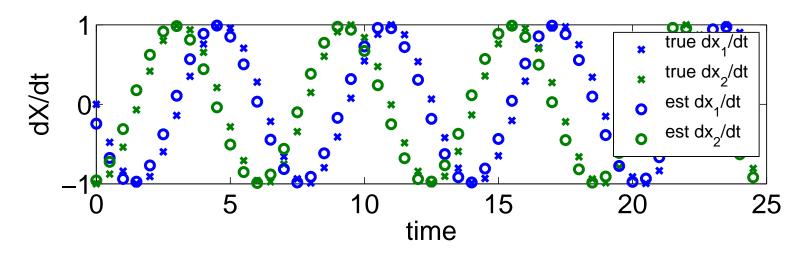
Original data:







Finite difference estimates of derivatives

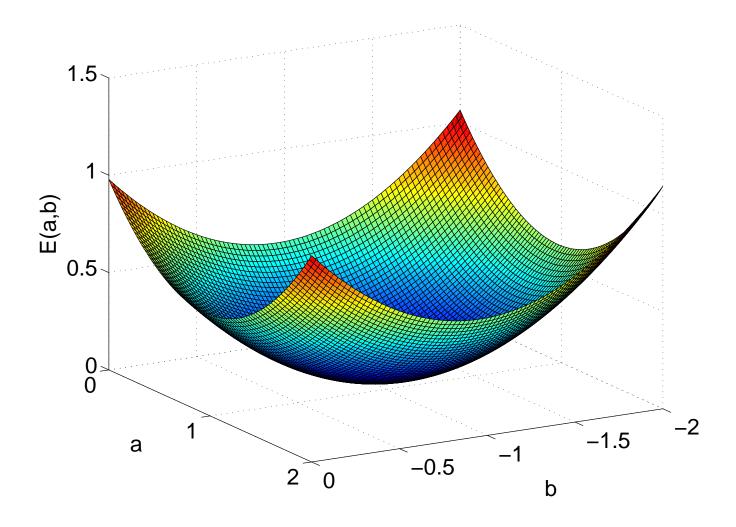


Minimizing

$$\frac{1}{TM} \sum_{i=1}^{T} \left\| \begin{bmatrix} \hat{x_1}(t_i) \\ \hat{x_2}(t_i) \end{bmatrix} - \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} \begin{bmatrix} x_1(t_i) \\ x_2(t_i) \end{bmatrix} \right\|^2$$

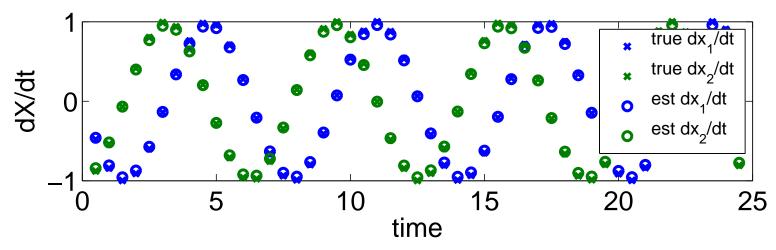
can be done analytically, yielding a=0.9597 and b=-0.9581.

The error surface



Central difference estimates of derivatives

Estimating as $\dot{x}_i(t_j) = (x_i(t_{j+1}) - x_i(t_{j-1}))/(t_{j+1} - t_{j-1})$:

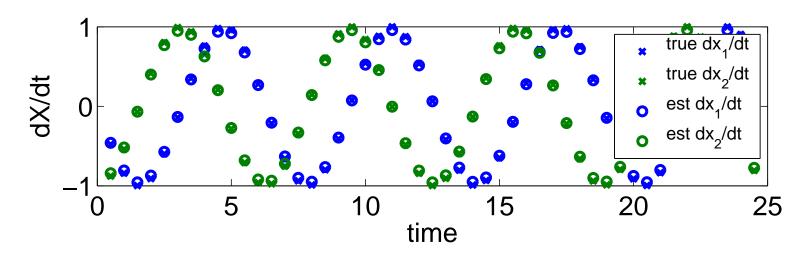


Minimizing

$$\frac{1}{TM} \sum_{i=1}^{T} \left\| \begin{bmatrix} \hat{x_1}(t_i) \\ \hat{x_2}(t_i) \end{bmatrix} - \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} \begin{bmatrix} x_1(t_i) \\ x_2(t_i) \end{bmatrix} \right\|^2$$

yields a = 0.9589 and b = -0.9589.

Fitting full interconnect matrix

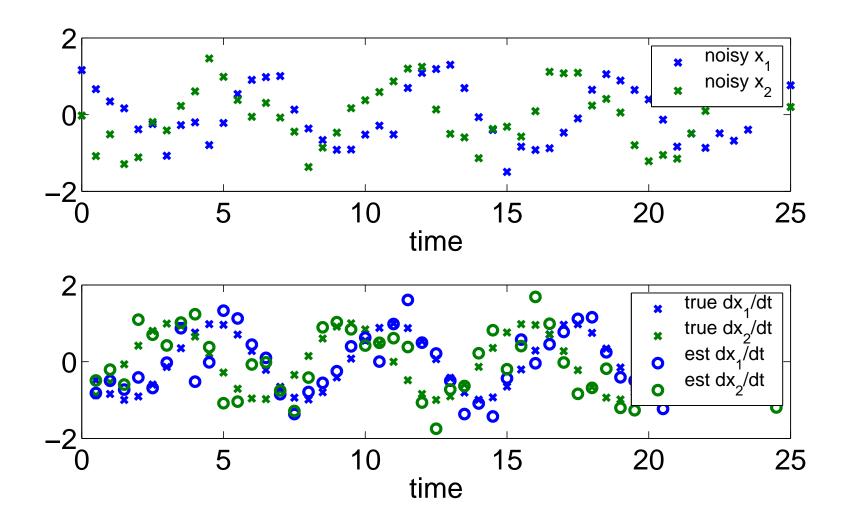


Minimizing

$$\frac{1}{TM} \sum_{i=1}^{T} \left\| \begin{bmatrix} \hat{x_1}(t_i) \\ \hat{x_2}(t_i) \end{bmatrix} - \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(t_i) \\ x_2(t_i) \end{bmatrix} \right\|^2$$

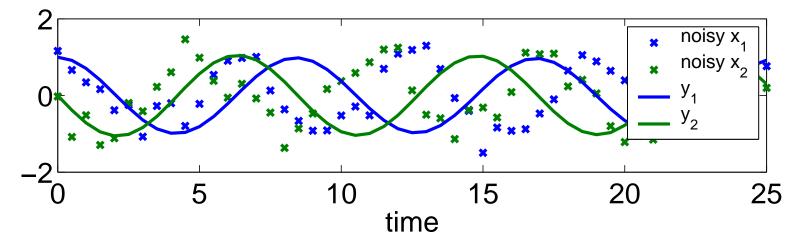
yields
$$A = \begin{bmatrix} -0.00003 & 0.9589 \\ -0.9589 & -0.00002 \end{bmatrix}$$
.

What if the data are noisy?



Fitting a full interconnect matrix

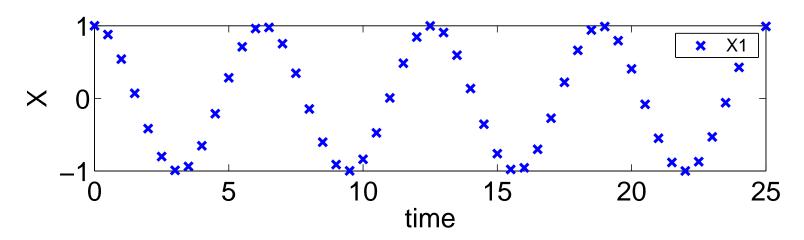
Yields
$$A = \begin{bmatrix} -0.0337 & 0.6994 \\ -0.7886 & 0.0298 \end{bmatrix}$$



A general caveat: Note that the simulated model diverges from the real trajectory.

(This doesn't have to do just with noise.)

Caveat: What if we only observe x_1 ?



- We don't have x_2 to predict $\dot{x}_1!$
- We can't estimate \dot{x}_2 to resolve x_1 's influence!

Select literature examples

- Functional Data Analysis community in statistics (e.g., Ramsay & Silverman, 1997)
- D'Haeseleer *et al.* (PSB,1999) essentially used finite differences to fit a linear ODE model to central nervous system gene expression time series.
- Perkins et al. (PLoS Comp Bio, 2006) used a hybrid approach to fit the gap gene data. A regression approach was used to initialize parameter estimates; trajectory-based fitting was used to tune parameters and ensure good fit between simulated and observed data.
- Summer & Perkins (BMC Genetics, 2010) used spatio-temporal smoothing plus logistic regression to fit the gap gene data. Because it's fast, we explicitly evaluated all possible network structures.

Conclusions

- "Traditional" trajectory-based formulation of model-fitting results in highly nonlinear, difficult optimization problems.
- Numerical methods for fitting to trajectories are subject to local optimality (grad. descent, Newton, fminsearch, local search) or are computationally intensive (simulated annealing).
- However, they apply most generally, including when some model variables are not observed and/or data are noisy.
- "Nontraditional" approaches based on derivative-fitting in a regression framework, including functional data analysis, are computationally efficient, and sometimes analytically solvable.
- However, they only apply (easily) when all model variables are observed.
 When the model is simulated, it may not match the observed trajectory well.

